Combined effect of nerve growth factor and brain-derived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms
نویسندگان
چکیده
Neural stem cells (NSCs) are important pluripotent stem cells, which have potential applications in cell replacement therapy. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have been demonstrated to exert a marked impact on the proliferation and differentiation of NSCs. The effects of NGF, BDNF, and BDNF combined with NGF on NSC neuronal differentiation and the possible mechanisms for these effects were investigated in this study. An adherent monolayer culture was employed to obtain highly homogeneous NSCs. The cells were divided into four groups: Control, NGF, BDNF and combination (BDNF + NGF) groups. Neuron differentiation was examined using immunocytochemistry and phospho-extracellular signal-regulated kinase (p‑ERK) levels were analyzed using western blotting. Reverse transcription polymerase chain reaction was used to measure the mRNA expression levels of the HES1, HES5, MASH1, NGN1 and NeuroD transcription factors at different time intervals following neurotrophin-induced differentiation. NGF and BDNF were observed to induce NSC neuronal differentiation, and β-tubulin III-positive cells and p-ERK expression levels were highest in the NGF + BDNF combination group at all time points. The proportion of β-tubulin Ⅲ-positive neurons in each group was associated with the expression levels of MASH1, NGN1 and NeuroD in the group. In conclusion, BDNF combined with NGF significantly improved NSC neuronal differentiation, which may provide support for the practical application of NSCs in neurodegenerative diseases.
منابع مشابه
Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro
Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...
متن کاملEffect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors
Objective(s): The stimulation of neural stem cells (NSCs) differentiation into neurons has attracted great attention in management of neurodegenerative disease and traumatic brain injury. It has been reported that selegiline could enhance the morphologic differentiation of embryonic stem cells. Therefore this study aimed to investigate the effects of selegiline on NSCs differentiation with focu...
متن کاملThe effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملThe Effect of Endurance Exercise Training on the Expression of Brain-Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) Genes of the Cerebellum in Diabetic Rat
Objective: Few studies have been conducted on variations of the central nervous system of diabetic patients and much fewer investigations done on the cerebellum of diabetes patients. The current research aims to investigate the effect of endurance training on neurotrophic factors affecting the cerebellum in the diabetic rat. Materials and Methods: This study is experimental.Twenty Wistar rat w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014